CP²: Copy-Paste Contrastive Pretraining for Semantic Segmentation

Feng Wang¹, Huiyu Wang², Chen Wei², Alan Yuille², and Wei Shen³∗

Department of Automation, Tsinghua University

² Department of Computer Science, Johns Hopkins University

³ MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

Motivation

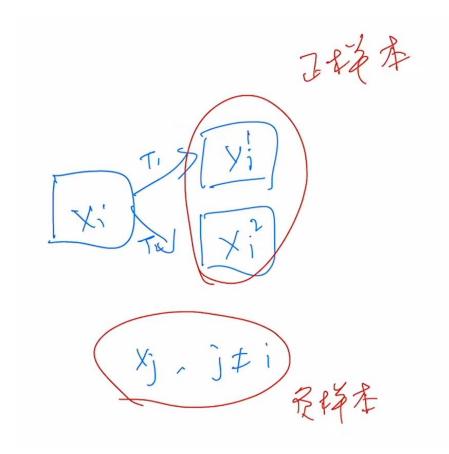
- Current image-level pretraining to downstream dense prediction paradigm is not ideal
- Existing constrastive learning model may over-fit to learning imagelevel representation and neglect pixel-level variances
- Arch. misalignment:
 - Sem. seg. requires small out stride and a large atrous rate (not in backbone)
 - Randomly initializaiton for seg. head could negatively affect trained bone

Contribution

- Novel Self-pretraining Method (Copy-Paste Constastive Pretraining)
 - Address arch. misalignment
 - Endow net with perception of spatially varying information
- Quick Tuning protocol
- +2.7% mIoU on PASCAL VOC 2012 than baseline (MoCo v2)

Review -- MoCo

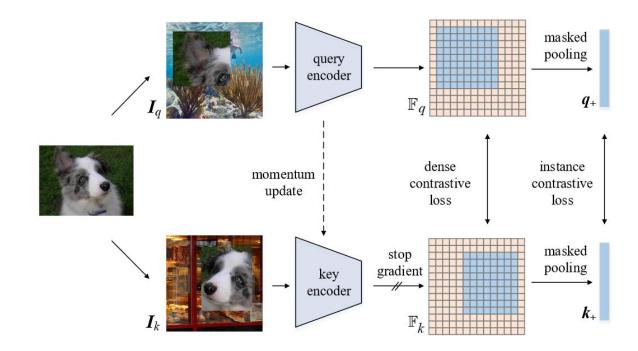
• Instance Discrimination (个体判别)





(b) Momentum Contrast

- Rand crop and paste to diff.
 backgrounds
- Two targets:
 - Get FG from BG
 - Recognize Ims with same FG



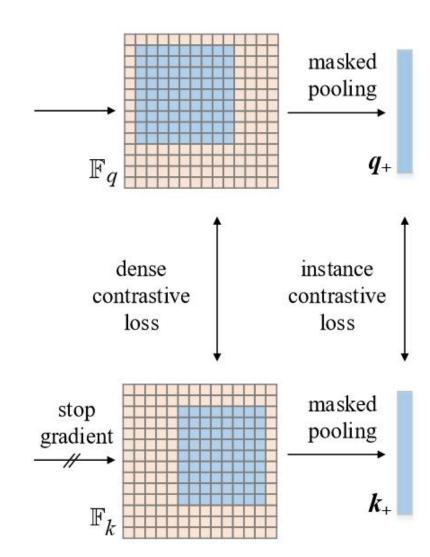
Compose Images

$$I_q = I_q^{fore} \odot M_q + I_q^{back} \odot (1 - M_q),$$

 $I_k = I_k^{fore} \odot M_k + I_k^{back} \odot (1 - M_k),$

mome upd

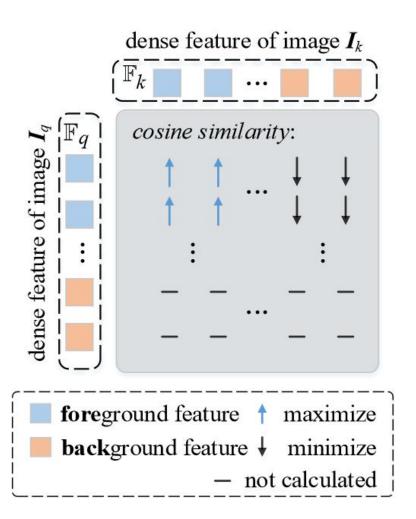
- Constrastive objectives
- -- Dense Constrastive
 - Diff. FG & BG
- -- Instance Constrastive
 - Keep global, instance-level representations



• Dense Loss

$$\mathcal{L}_{dense} = -\frac{1}{|\mathbb{F}_{q}^{+}||\mathbb{F}_{k}^{+}|} \sum_{\forall \boldsymbol{f}_{q}^{+} \in \mathbb{F}_{q}^{+}, \forall \boldsymbol{f}_{k}^{+} \in \mathbb{F}_{k}^{+}} \log \frac{\exp(\boldsymbol{f}_{q}^{+} \cdot \boldsymbol{f}_{k}^{+} / \tau_{dense})}{\sum_{\forall \boldsymbol{f}_{k} \in \mathbb{F}_{k}} \exp(\boldsymbol{f}_{q}^{+} \cdot \boldsymbol{f}_{k} / \tau_{dense})},$$

$$\boldsymbol{f}_{k}^{+} \in \mathbb{F}_{k}^{+} \subset \mathbb{F}_{k}.$$

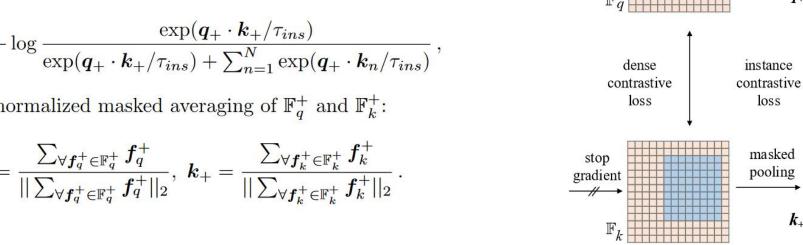


- Instance Loss
 - Distinguish positive key from a memory bank of negative keys
 - Use normalized masked averaging of only FG features instead of GAP

$$\mathcal{L}_{ins} = -\log \frac{\exp(\boldsymbol{q}_{+} \cdot \boldsymbol{k}_{+}/\tau_{ins})}{\exp(\boldsymbol{q}_{+} \cdot \boldsymbol{k}_{+}/\tau_{ins}) + \sum_{n=1}^{N} \exp(\boldsymbol{q}_{+} \cdot \boldsymbol{k}_{n}/\tau_{ins})},$$

where q_+ , k_+ are normalized masked averaging of \mathbb{F}_q^+ and \mathbb{F}_k^+ :

$$m{q}_{+} = rac{\sum_{orall m{f}_{q}^{+} \in \mathbb{F}_{q}^{+}} m{f}_{q}^{+}}{||\sum_{orall m{f}_{q}^{+} \in \mathbb{F}_{q}^{+}} m{f}_{q}^{+}||_{2}}, \,\, m{k}_{+} = rac{\sum_{orall m{f}_{k}^{+} \in \mathbb{F}_{k}^{+}} m{f}_{k}^{+}}{||\sum_{orall m{f}_{k}^{+} \in \mathbb{F}_{k}^{+}} m{f}_{k}^{+}||_{2}} \,.$$



masked pooling

$$\mathcal{L} = \mathcal{L}_{ins} + \alpha \mathcal{L}_{dense},$$

- Arch.
 - Make some adaption on ResNet50
 - Compatible with most seg. heads (DeepLab v3 by default)
- Quick Tuning
 - Initialize backbone with available backbones
 - Initialize seg. head with random parameters
 - Use CP² training method for just a few epochs

- Datasets
 - Pretrain: ImageNet
 - Segment: VOC, ADE20K, Cityscapes
- Seg. Head
 - DeepLab v3 ASPP (default setting)
 - CP² head: 2Layer 512Channel 1*1 + ReLu + 128C 1*1
 - FCN Head

Table 1: Evaluation results (mIoU) with DeepLab v3 segmentation head. QT denotes Quick Tuning with CP² initialized by a MoCo v2 pre-trained backbone. Our results are marked in gray . The best results are bolded. Epochs that are consumed by the initialization model are de-emphasized.

method	backbone	epoch	PASCAL	Cityscapes	ADE20k
supervised	ResNet-50	15	76.0	76.3	39.5
MoCo [28]	ResNet-50	200	73.2	75.8	38.6
SimCLR [10]	ResNet-50	1000	77.3	76.5	40.1
BYOL [26]	ResNet-50	300	77.4	76.5	40.2
InfoMin [41]	ResNet-50	800	77.2	76.5	39.6
InsLoc [46]	ResNet-50	400	75.6	76.3	40.3
DetCon [30]	ResNet-50	1000	78.1	77.1	40.6
PixPro [45]	ResNet-50	400	77.5	76.6	40.3
MoCo v2 [12]	ResNet-50	200	74.9	76.2	39.2
\mathbb{CP}^2	ResNet-50	200	77.6	77.3	40.5
\mathbb{CP}^2 QT r.200	ResNet-50	200+20	76.5	77.2	40.7
MoCo v2 [12]	ResNet-50	800	77.2	76.4	39.7
\mathbf{CP}^2 QT r.800	ResNet-50	800+20	78.6	77.4	41.3
MoCo v2 [12]	ViT-S/16	300	78.8	77.2	41.3
$\mathbf{CP}^2 \ \mathrm{QT} \ \mathrm{v.300}$	ViT-S/16	300+20	79.5	77.6	42.2

Table 2: Evaluation results (mIoU) with FCN head. QT denotes Quick Tuning with CP² initialized by a MoCo v2 pre-trained backbone. Our results are marked in gray . The best results are bolded. Epochs that are consumed by the initialization model are de-emphasized.

method	backbone	epoch	PASCAL	Cityscapes	ADE20k
supervised	ResNet-50	-	73.7	75.8	37.4
MoCo v2 [12]	ResNet-50	200	74.4	75.8	37.4
\mathbb{CP}^2	ResNet-50	200	75.4	76.4	38.4
\mathbb{CP}^2 QT r.200	ResNet-50	200+20	75.2	76.4	38.0
MoCo v2 [12]	ResNet-50	800	74.8	75.9	37.9
CP ² QT r.800	ResNet-50	800+20	75.7	76.5	39.2
MoCo v2 [12]	ViT-S/16	300	77.7	76.6	40.4
\mathbb{CP}^2 QT v.300	ViT-S/16	300+20	78.6	77.0	41.2

- Ablation
 - Seg head during pretraining & Dense Loss
 - Copy-paste style (pixel-wise, patch-wise and rec.-wise)
 - Training schedule
 - Hyper-parameters

Table 3: Ablation study of segmentation head pretraining on PASCAL VOC. The results are based on ASPP segmentation head. We use Quick Tuning for CP² in the settings of (ResNet-50, 800 epochs) and (ViT-S/16, 300 epochs).

mode	backbone	head	mIoU
ResNet-50, 200 epochs	MoCo v2 CP ² CP ²	$egin{array}{c} { m random} \\ { m \bf CP}^2 \end{array}$	74.9 76.3 (+1.4) 77.6 (+ 2.7)
ResNet-50, 800 epochs	$egin{array}{c} MoCo \ v2 \ CP^2 \ QT \ CP^2 \ QT \end{array}$	${f random} \ {f cP}^2 \ {f QT}$	77.2 78.2 (+1.0) 78.6 (+ 1.4)
ViT-S/16, 300 epochs	$egin{array}{c} MoCo\ v2 \\ CP^2\ QT \\ CP^2\ QT \end{array}$	$egin{array}{c} { m random} \\ { m \bf CP}^2 \ { m QT} \end{array}$	78.8 79.3 (+0.5) 79.5 (+ 0.7)

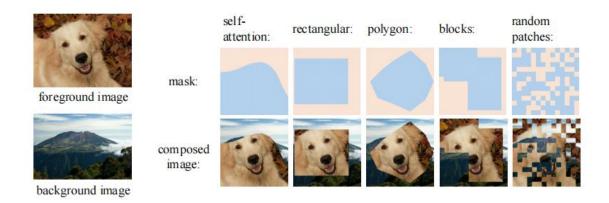


Fig. 4: Examples of masking strategies and composed images. The self-attention mask (DINO mask) is smoothed by Gaussian blur.

Table 4: Evaluation results of foreground-background masks on PAS-CAL VOC. Note that for the full mask, the models are trained without dense contrastive loss. Our default setting is marked in gray.

mode	random	mIoU		
mode	random	ViT-S/16		
baseline MoCo v2	-	77.2	78.8	
no copy-paste	1,-,	77.6	78.9	
DINO self-attention mask [6]	X	77.9	79.3	
rectangular mask	/	78.6	79.5	
polygon mask	/	78.1	79.0	
random blocks	/	77.3	78.7	
random patches	✓	75.3	78.9	

Table 5: Evaluation results of hyper-parameter search on PASCAL VOC. The results are based on ResNet50-ASPP models, where the base backbone is loaded from the MoCo v2 pretrained ResNet50 for 800 epochs. Our default setting is marked in gray. The best results are **bolded**.

(a) loss weight and temperature (b) Quick Tuning epochs

	$temperature(\tau_{dense})$			epoch	mIoU	
weight	2	1	0.5	0.2	0	77.2
10	77.4	77.0	76.9	77.2	10	77.7 (+0.5)
1	77.3	77.9	77.3	77.4	20	78.6 (+1.4)
0.5	77.2	78.0	77.3	77.1	40	78.7 (+1.5)
0.2	76.9	78.6	77.3	76.7		
0.1	76.0	77.7	77.5	75.8		

$$\mathcal{L}_{dense} = -\frac{1}{|\mathbb{F}_q^+||\mathbb{F}_k^+|} \sum_{\forall \boldsymbol{f}_q^+ \in \mathbb{F}_q^+, \forall \boldsymbol{f}_k^+ \in \mathbb{F}_k^+} \log \frac{\exp(\boldsymbol{f}_q^+ \cdot \boldsymbol{f}_k^+ / \tau_{dense})}{\sum_{\forall \boldsymbol{f}_k \in \mathbb{F}_k} \exp(\boldsymbol{f}_q^+ \cdot \boldsymbol{f}_k / \tau_{dense})},$$

Summary

- Constrastive loss for segmentation ?
- How about using this as backbone?